anisms for luminescence from these systems. If the interpretation given above is valid, and one sees magnetic field effects only when the triplet route is predominantly responsible for luminescence, then the zero (or very slight) effect observed with the TPP anion-cation reaction implies that the singlet route is much the predominant pathway to luminescence and the reaction is essentially energy sufficient. Such a suggestion is indeed quite plausible, and the energetics may only appear marginal because $-\Delta H^{\circ}$ has been significantly underestimated (vide supra). In contrast, our hypothesis suggests that luminescence from the rubrene anion-cation annihilation arises predominantly from the triplet pathway. Interestingly, Maloy and Bard made the same suggestion as a consequence of their observation of a low emission efficiency from this system compared to that from the DPA anion-cation reaction.⁸² Chang, Hercules, and Roe likewise concluded from their analysis of intensity-decay curves that the triplet pathway was an important route to emission from the rubrene anion-cation reaction,³³ and recent work by Bezman

(32) J. T. Maloy and A. J. Bard, J. Amer. Chem. Soc., 93, 5968 (1971).

and Faulkner using an extended Feldberg analysis has implied that it is the only route.³⁴ An intriguing issue raised in this work concerns the sharpness of the energy criterion. One wonders whether the line between energy sufficiency and energy deficiency is as distinct and important as these last two cases may suggest. In the marginal energy region it may in fact be that more specific system factors, such as relative geometries of the ions, the excited singlets, and the triplets, become extremely important for dictating the predominant luminescent pathway.

Acknowledgment. The support of this research by the National Science Foundation (No. GP-6688X) and the U. S. Army Research Office-Durham is gratefully acknowledged. We are indebted to the National Science Foundation and the Electrochemical Society for fellowship support to one of us (L. R. F.) and to Professor Stephen E. Webber for helpful discussions concerning this work.

(33) J. Chang, D. M. Hercules, and D. K. Roe, *Electrochim. Acta*, 13, 1197 (1968).

(34) R. Bezman and L. R. Faulkner, J. Amer. Chem. Soc., submitted for publication.

Temperature-Dependent ¹⁸C Relaxation Studies of Small Molecules

T. C. Farrar,^{1a} S. J. Druck,^{1b} Regitze R. Shoup,^{1c} and Edwin D. Becker^{*1c}

Contribution from the National Bureau of Standards, Washington, D. C. 20234, Catholic University of America, Washington, D. C. 20017, and National Institutes of Health, Bethesda, Maryland 20014. Received March 15, 1971

Abstract: ¹³C spin-lattice relaxation times (T_1) are reported for 60% enriched samples of CH₃OH, CH₃I, CH₃Br, CHBr₃, CHCl₃, CH₃¹³COOH, and CS₂, each measured over a wide range of temperatures at 15.1 MHz. Data are also given on the magnetic field dependence of $T_1({}^{13}C)$ in CH₃OH, CH₃I, and CH₃ 13 COOH. The T_1 results, together with nuclear Overhauser enhancements measured for the foregoing hydrogen-containing molecules, as well as for CH₃ 13 COCH₃, 13 CH₃CH₃CD₃, and (CH₃)₄Si, are interpreted in terms of the probable relaxation mechanisms.

The rapidly increasing use of ¹³C nmr has generated considerable interest in the mechanisms by which ¹³C nuclei relax. A knowledge of relaxation rates and the basic mechanisms that determine those rates is essential for the efficient application of Fourier transform^{2a} and nuclear Overhauser enhancement (NOE) techniques.^{2b}

Until the last year few data had been reported for ¹³C relaxation times, and little interpretation had been attempted. McConnell and Holm³ speculated on a possible relaxation mechanism for ¹³C in CS₂; Ettinger⁴ and Hunter and Reeves⁵ each reported values for T_1 (¹³C) in a few compounds; and Kuhlmann and Grant⁶

interpreted NOE data for formic acid in terms of a dipolar relaxation mechanism for the ¹³C. Olivson, Lippmaa, and Past⁷ reported T_1 's for ¹³C in a number of compounds, but later results cast considerable doubt on several of their values.

Recent studies have considerably extended our knowledge of ¹⁸C relaxation rates and mechanisms for some compounds. Jones⁸ reported T_1 's for a number of compounds at room temperature. Spiess, *et al.*,⁹ made a detailed temperature and field dependence study of T_1 in CS₂, and Gillen, Schwartz, and Noggle¹⁰ investigated CH₃I in detail. Grant and coworkers^{2,11,12} used

(6) K. F. Kuhlmann and D. M. Grant, J. Amer. Chem. Soc., 90, 7255 (1968).

^{(1) (}a) National Bureau of Standards; (b) Catholic University of America; (c) National Institutes of Health.

^{(2) (}a) R. R. Ernst and W. A. Anderson, *Rev. Sci. Instrum.*, 37, 93 (1966); (b) K. F. Kuhlmann, D. M. Grant, and R. K. Harris, *J. Chem. Phys.*, 52, 3439 (1970).

⁽³⁾ H. M. McConnell and C. H. Holm, ibid., 25, 1289 (1956).

⁽⁴⁾ R. Ettinger, Ph.D. Dissertation, State University of New York, Stony Brook, N. Y., 1962.

⁽⁵⁾ B. K. Hunter and L. W. Reeves, Can. J. Chem., 46, 1399 (1968).

⁽⁷⁾ A. Olivson, E. Lippmaa, and J. Past, Eesti NSV Tead. Akad. Toim., 16, 390 (1967).

⁽⁸⁾ D. Jones, Ph.D. Dissertation, University of California, Berkeley, Calif.

⁽⁹⁾ H. W. Spiess, D. Schweitzer, U. Haeberlen, and K. H. Hausser, Abstracts of the 12th Experimental Nmr Conference, Gainesville, Fla. 1971.

⁽¹⁰⁾ K. T. Gillen, M. Schwartz, and J. H. Noggle, Mol. Phys., 20, 899 (1971).

 T_1 and NOE measurements to elucidate some aspects of relaxation mechanisms in several molecules, while Freeman and Hill¹⁸ and Doddrell and Allerhand^{14,15} used Fourier transform methods to find T_1 's for individual carbon nuclei. Most recently Jaeckle, Haeberlen, and Schweitzer¹⁶ reported and analyzed T_1 data for ¹H and ¹⁸C in several molecules.^{16a}

We report here measurements of $T_1({}^{13}\text{C})$ as a function of temperature for neat liquid samples of ${}^{13}\text{C}$ -enriched CHCl₃, CH₃ ${}^{13}\text{COOH}$, CH₃OH, CH₃I, CH₃Br, CHBr₃, and CS₂. In addition, we have measured nuclear Overhauser enhancements for these molecules and for CH₃- ${}^{13}\text{COCH}_3$, ${}^{13}\text{CH}_3\text{COOCD}_3$, and (CH₃)₄Si at 30° and the frequency dependence of T_1 for CH₃OH, CH₃I, and CH₃ ${}^{13}\text{COOH}$.

Experimental Section

All experiments except the frequency dependence studies were carried out at 15.1 MHz with a single coil pulse spectrometer fabricated at the National Bureau of Standards. For T_1 measurements 180°, τ , 90° pulse sequences were used, and the values of T_1 were obtained from least-squares fits of the logarithm of the heights of the 90° pulse responses as a function of τ . An external ¹⁹F field/frequency lock was employed, and in some cases data from four runs were averaged with a Fabritek 1074 time averaging computer to improve signal/noise. The 90° pulse width was $\sim 3 \mu$ sec, and the homogeneity of H_1 was quite good, as indicated by comparison of 90 and 270° pulse responses. The homogeneity of H_0 was adjusted to give $T_2^* \ge 100$ msec. Sample temperature was controlled by preheated or precooled nitrogen and was measured by a calibrated thermocouple in the effluent gas stream. Temperature accuracy is estimated as $\pm 0.5^\circ$.

Measurements of T_1 at 9 and 19 MHz were made with an unlocked pulse spectrometer using 180°, τ , 90° sequences. Data were obtained only at room temperature, 24°.

Nuclear Overhauser enhancements (η) were measured at 15.1 MHz by noting the increase in peak-to-peak amplitude of the response to a 90° pulse when ¹H noise modulation was applied at or near proton resonance. Measurements were made near t = 0 with the magnetic field a few kilohertz ($\Delta \nu \gg J$) off resonance to ensure that amplitude modulation from scalar coupling would not affect the measured intensity of the undecoupled decay envelope. This method is satisfactory for the present purpose, but Fourier transformation and integration of the resulting spectral lines is required for obtaining NOE's for individual lines in more complex molecules.¹⁶

The temperature under decoupling conditions was kept as near room temperature as possible by blowing cold air over the decoupling coil. The temperature $(30 \pm 1^{\circ})$ was measured by inserting a thermocouple into an open sample tube with 1 cc of methanol.

Samples were thoroughly degassed by trap to trap distillation and several freeze-pump-thaw cycles. Sample tubes were 10 mm o.d., constricted to about 1 mm i.d. below the liquid surface and near the top of the rf coil in order to minimize liquid-vapor interchange. (Failure to take such precautions can affect the measured T_1 and η values due to contributions from rapidly relaxing nuclei in the vapor phase¹⁷ as we show later.)

Samples were neat liquids of approximately 60% enriched material, obtained commercially. Because of the limited amounts of material available we were unable to carry out any purification

except distillation *in vacuo* as part of the degassing procedure. Vapor phase chromatography, ir, and ¹H nmr data showed no impurities.

Results and Discussion

Relaxation Mechanisms. Several interactions can contribute to the relaxation rate, R_1 ($R_1 \equiv 1/T_1$), of a ¹³C nucleus: (1) dipole-dipole, R_1^{d} ; (2) chemical shift anisotropy, R_1^{csa} ; (3) scalar relaxation, R_1^{sc} ; and (4) spin-rotation, R_1^{sr} . The observed rate is the sum of these four terms.

Dipolar relaxation arises primarily from nearby nuclei with large magnetic moments, usually ¹H in the molecules studied here. (We neglect *inter*molecular dipoledipole interactions which should be quite small.) In the "extreme narrowing condition" that characterizes the motion of small molecules, R_1^d for ¹⁸C relaxed by ¹H is given by ¹⁸

$$R_1^{\rm d} = (\gamma_{\rm C}^2 \gamma_{\rm H}^2 \hbar^2 / r^6) \tau_{\rm c} \tag{1}$$

where $\gamma_{\rm C}$ and $\gamma_{\rm H}$ are the magnetogyric ratios of ¹³C and ¹H, which are separated by a distance *r*, and $\tau_{\rm c}$ is the correlation time for the rotational motion of the internuclear vector *r*. $\tau_{\rm c}$ varies exponentially with temperature as

$$\tau_{\rm c} = \tau_{\rm c}^{0} e^{E/kT} \tag{2}$$

As τ_c decreases with increasing temperature, R_1 also decreases.

 R_1^{csa} also is proportional to the molecular reorientation time. R_1^{csa} , however, is also dependent on magnetic field ¹⁸

$$R_{1}^{csa} = (2/15)\gamma_{C}^{2}H_{0}^{2}(\sigma_{\parallel} - \sigma_{\perp})^{2}\tau_{c}$$
(3)

where H_0 is the applied magnetic field, and $(\sigma_{\parallel} - \sigma_{\perp})$ is the anisotropy in the chemical shift.¹⁹

 R_1^{sc} arises from scalar spin coupling between ¹³C and a nucleus that relaxes rapidly, usually by quadrupolar interactions. R_1^{sc} is given by ¹⁸

$$R_1^{\rm sc} = \frac{8\pi^2 J^2}{3} S(S+1) \frac{T_{1\rm S}}{1+4\pi^2 (\nu_{\rm C}-\nu_{\rm S})^2 (T_{1\rm S})^2} \quad (4)$$

where J is the spin-spin coupling constant between ¹⁸C and a spin S with relaxation time T_{1S} , and Larmor frequency ν_S . ν_C is the Larmor frequency of ¹³C. Of the molecules studied here, only those containing I or Br are possible candidates for scalar relaxation, since these are the only nuclei where $T_{1S} \approx 1/2\pi(\nu_C - \nu_S)$. The behavior of R_1^{sc} with temperature depends on the relative magnitudes of $(\nu_C - \nu_S)$ and T_{1S} . The contribution to R_1^{sc} from ⁷⁹Br will increase with temperature, opposite to that from ⁸¹Br and I.

 R_1^{sr} depends on the interaction of ¹³C with the overall molecular rotation²⁰ and is given by

$$R_1^{\rm sr} = (2\pi I k T / h^2) C_{\rm eff}^2 \tau_J$$
 (5)

where I is the molecular moment of inertia, C_{eff} is the effective spin-rotation coupling tensor, and the correlation time τ_J is given by

$$\tau_J = I/6kT\tau_c \tag{6}$$

(20) P. S. Hubbard, Phys. Rev., 141, 1155 (1963).

⁽¹¹⁾ J. R. Lyerla, Jr., D. M. Grant, and R. K. Harris, J. Phys. Chem., 75, 585 (1971).

⁽¹²⁾ T. D. Alger, S. W. Collins, and D. M. Grant, J. Chem. Phys., 54, 2820 (1971).

⁽¹³⁾ R. Freeman and H. D. W. Hill, ibid., 54, 3367 (1971).

⁽¹⁴⁾ D. Doddrell and A. Allerhand, J. Amer. Chem. Soc., 93, 1558
(1971).
(15) A. Allerhand, D. Doddrell, and R. Komoroski, J. Chem. Phys.,

 ⁽¹⁶⁾ H. Jaeckle, U. Haeberlen, and D. Schweitzer, J. Magn. Reso-

⁽¹⁶⁾ H. Jaeckie, O. Haeberten, and D. Schwenzer, J. Magn. Resonance, 4, 198 (1971).

⁽¹⁶a) NOTE ADDED IN PROOF. A. Olivson and E. Lippmaa, Chem. Phys. Lett., 11, 241 (1971), recently reported T_1 's for ¹³C in several small molecules over a wide range of temperature.

⁽¹⁷⁾ D. W. Aksnes, M. Rhodes, and J. G. Powles, *Mol. Phys.*, 14, 333 (1968).

⁽¹⁸⁾ A. Abragam, "Principles of Nuclear Magnetism," Oxford University Press, Oxford, 1961, Chapter 8.

⁽¹⁹⁾ Equation 3 applies strictly only to a molecule with axial symmetry but illustrates the salient features of this relaxation mechanism in general.

Table I. ¹³C Spin-Lattice Relaxation Times (T_1) and Nuclear Overhauser Enhancement (η) at 30° and 15 MHz

Molecule ^a	ηδ	T_1 , sec	R_1 , sec ⁻¹	$R_{1^{d}}$, sec ⁻¹	$R_1^{\text{other}}, \text{sec}^{-1}$	Ref
CHCl ₃	1.75	32.4 ± 0.5	0.0309	0.027	0.004	
CH ₃ ¹³ COOH	1.44	41.1 ± 0.6	0.0243	0.018	0.006	
CH ₃ OH	0.92	17.5 ± 0.3	0.057	0.027	0.031	
	0.73	13.4 ± 0.8	0,075	0.027	0.048	11
CH₃I	0.52	13.4 ± 0.2	0.075	0.019	0.056	
	0.42	11.1 ± 0.4	0.090	0.019	0.071	11
		14.2 ± 0.4	0.070			10
CH ₃ Br	0.30	8.8 ± 0.2	0.114	0.017	0.097	
CHBr ₃	0.30	1.65 ± 0.05	0.61	0.10	0.51	
CH ₃ ¹³ COCH ₃	0.19	36.1 ± 0.3	0.0277	0.003	0.025	
¹ ³ CH ₃ COOCD ₃ (CH ₃) ₄ Si	1.00 1.65	19.2 ± 0.4	0.0520	0.026	0.026	

^a ¹³C enrichment about 60%, except (CH₃)₄Si, which is 5% enriched. ^b The estimated accuracy of $1 + \eta$, the intensity ratio, is $\pm 10\%$.

Thus R_1^{sr} varies inversely with τ_c , hence *increases* with increasing temperature.

Studies of the temperature dependence of T_1 can, then, provide insight into the contributions from the various relaxation mechanisms. In addition, a direct measure of the contribution from dipole-dipole interaction with nearby protons may be obtained from the results of nuclear Overhauser enhancement studies. Kuhlmann, *et al.*,² showed that η , the fractional increase in the intensity of the ¹³C signal on irradiation at the proton resonance frequency, is given by

$$\eta = 1.988(R_1^{\rm d}/R_1) \tag{7}$$

Thus from a measurement of R_1 and of η , R_1^d can be calculated.

 T_1 and NOE Data. Table I summarizes our NOE results, together with values of R_1 and R_1^d , for the hydrogen-containing molecules at 30°. Three of these molecules have also been examined by Lyerla, *et al.*,¹¹ using the same method. (For CH₃COOH, however, their results refer to the CH₃ carbon.) Their data were obtained with cw, rather than pulse methods, with R_1 's determined by adiabatic rapid passage. As indicated in Table I, their data and ours for CH₃OH and CH₃I are in substantial agreement, although small discrepancies exist which will be discussed below.

Figure 1 shows the temperature dependence of R_1 at 15.1 MHz for six of these molecules and CS₂. The straight lines with positive slope obtained for CHCl₃ and CH₃¹³COOH indicate that R_1 is mostly dipolar, in agreement with the NOE values ($\eta = 1.75$ and 1.44) obtained at 30°.

The curve for CH₃OH shows that R_1^d dominates over most of the temperature range with increasing contributions from R_1^{sr} at higher temperatures. The curve was resolved into two straight lines with opposite slope, from which the contributions from spin-rotation and dipole-dipole relaxation were estimated.²¹ At 30° this graphic analysis yielded $R_1^{sr} = 0.024 \text{ sec}^{-1}$ and R_1^d = 0.033 sec⁻¹, in agreement within experimental error with the values $R_1^{other} = 0.031 \text{ sec}^{-1}$ and $R_1^d = 0.027$ sec⁻¹ obtained from the NOE measurement. The value obtained for R_1^d in this study agrees well with that found by Lyerla, et al.¹¹ ($R_1^{d} = 0.027$ at ~35°), while their value for R_1^{other} (0.048 sec⁻¹) is substantially higher than ours. This discrepancy is outside the range of experimental errors in T_1 determinations, and the higher value obtained by Lyerla, et al.,¹¹ may be due to additional spin-rotation relaxation from molecules in the vapor phase (see below).

The R_1 values for CH₃I were observed to be almost independent of temperature and in agreement with those obtained by Gillen, *et al.*¹⁰ The measurement of the NOE at 30°, $\eta = 0.49$, shows that the dipolar contribution is small ($R_1^{d} = 0.019 \text{ sec}^{-1}$; while $R_1^{\text{other}} =$ 0.056 sec^{-1}), and the relaxation at this temperature is evidently dominated by spin-rotation.

Figure 1. ¹³C relaxation rates as a function of inverse absolute temperature at 15.1 MHz.

Room temperature (24°) measurements at 9.2 and 19 MHz gave the same value (13.5 sec) for T_1 as at 15.1 MHz. The S/N of these measurements was considerably poorer, and we conservatively estimate the error limits as ± 2 sec. Gillen, *et al.*,¹⁰ speculated on the possible importance of scalar coupling as a relaxation mechanism for ¹³C in CH₃I. The present measurements indicate that scalar coupling is at best of very minor importance for ¹³C bound directly to ¹²⁷I.²²

(22) The maximum error limit of $\pm 2 \sec f$ or ¹³C T_1 obtained at 9.2 MHz allows an upper limit to be estimated for J_{C1} from eq 4. Using the ¹³⁷I relaxation time 2.5 $\times 10^{-7}$ sec calculated by Gillen, *et al.*, ¹⁰ we obtain $R_1^{so} = 2.3 \times 10^{-6} \times J_{C1}^2$ at 15.1 MHz and $R_1^{so} = 5.9 \times 10^{-6} \times J_{C1}^2$ at 9.2 MHz. Assuming negligible contribution from chemical shift anisotropy, we can combine the lowest possible value for T_1 at 9.2 MHz (11.5 sec) with $T_1 = 13.4$ sec at 15.1 MHz to obtain an upper limit for J_{C1} of ~ 60 Hz.

Farrar, Druck, Shoup, Becker / 18C Relaxation Studies

⁽²¹⁾ From the graphic analysis an activation energy $E_a^d = 1.95 \pm 0.05$ kcal/mol was obtained for R_1^d , and an exponential factor $E_a^{or} = -2.2 \pm 0.2$ kcal/mol for R_1^{or} . E_a^{d} is only slightly higher than that observed for methyl iodide¹⁰ (1.43 kcal/mol), whereas E_a^{or} is considerably larger in magnitude than the value (-0.7 kcal/mol) obtained for CH₃I.¹⁰ Even considering the limitations in the accuracy of resolving the curve, it seems that the hydrogen bonding in methanol may have profound effect on the spin-rotation contribution.

Figure 2. ¹³C relaxation rates for CH₃¹³COOH as a function of inverse absolute temperature at 15.1 MHz: solid line, sample tube geometry as described in text; dashed line, conventional sample tube.

The temperature dependence of R_1 for CH₃Br is qualitatively similar to that of CH₃I, suggesting presence of spin-rotation and dipole-dipole relaxation mechanisms. The low value of the Overhauser effect ($\eta = 0.29$) gives $R_1^d = 0.017 \text{ sec}^{-1}$ out of the total relaxation rate at room temperature, 0.114 sec⁻¹. However, an additional contribution from scalar relaxation is expected since the Larmor frequency of 79Br is not very different from that of ¹³C ($\nu_{\rm C} - \nu_{\rm Br} \simeq 54$ kHz). Assuming that the correlation time τ_c is similar to that for CH₃I $(\sim 1.4 \times 10^{-12})$ and using a quadrupole coupling constant of \sim 550 MHz (intermediate between those measured in the solid²³ and in the gas²⁴), we can calculate the ⁷⁹Br relaxation time $T_1^Q \simeq 6 \times 10^{-7}$ sec. From eq 4 the scalar contribution $R_1^{\rm sc} \sim 6 \times 10^{-5} \times J^2$ sec can be derived. For reasonable values of J (10-50 Hz) scalar relaxation can be seen to be important. Unfortunately, field dependence studies are of no use in this case because of the small magnitude of $\nu_{\rm C} - \nu_{\rm Br}$.²⁵ The effect of ⁸¹Br should vary with field strength, but the magnitude of the scalar contribution is much smaller and the presence of both isotopes makes such an experiment not very promising.

For CHBr₃, however, scalar relaxation probably is the dominant relaxation mechanism. R_1 is an order of magnitude larger than for the other molecules, and the low value of η (0.34) shows that dipole-dipole interaction is not dominant. It seems unlikely that spin rotation would contribute more in CHBr₃ than in CHCl₃, and in the latter it was shown to be negligible. Thus we conclude that scalar relaxation is the dominant relaxation mechanism for CHBr₃.

The temperature dependence curve for CS₂ shows that R_1 is dominated by spin rotation. Spiess, et al.,⁹ in a careful temperature and field dependence study also concluded that spin rotation is dominant at 15 MHz, but that R_1^{csa} contributes at low temperatures and high fields.

In addition to the measurements of R_1 for CH₃I at other frequencies R_1 for CH₃OH and CH₃¹³COOH

was measured at 9.2 and 19.0 MHz. R₁ of CH₂OH, as expected, was found to be independent of field strength. For CH₃¹³COOH at 24° we found a small apparent dependence of R_1 on frequency ($R_1 = 0.0249$, 0.0261, and 0.0279 sec^{-1} at 9.2, 15.1, and 19.0 MHz, respectively). Results at higher frequencies from other laboratories^{27,28} seemed to confirm this dependence, but a recent study by Haeberlen²⁹ at 61 MHz gave $R_1 =$ 0.0268 sec⁻¹ at 24.5°, indicating that R_1^{csa} is negligible for CH₃¹³COOH. The value obtained for η (1.44) then suggests the presence of spin-rotation interaction and/or a possible contribution from scalar relaxation if the exchange of the carboxyl proton takes place at an appropriate rate.

Included in Table I are values of η and T_1 for CH₃-¹³COCH₃ and ¹³CH₃COOCD₃. The low NOE's obtained for these molecules are probably ascribed to spin-rotation interaction. For ¹³CH₃COOCD₃ this interpretation is in qualitative agreement with the conclusion drawn by Gillen, et al., 10 and Lyerla, et al., 11 that (internal) spin-rotation contributes strongly to the relaxation of ¹³C in methyl groups. The observed value of $\eta = 1.65$ for $(CH_3)_4$ Si, however, indicates that steric interference between the four methyl groups restricts their internal rotation.

Effects of Sample Configuration and Oxygen. It is known that the spin-rotation contribution to relaxation in the vapor phase can be orders of magnitude larger than in the liquid.³⁰ If care is not taken to impede liquid-vapor interchange, the apparent R_1 for a volatile liquid may be much larger than the true value, since a large portion of the relaxation actually occurs in the vapor. Our results were obtained with tubes constricted between the measured portion of the liquid and the liquid surface.¹⁷ This type of sample tube effectively precludes rapid relaxation in the vapor from affecting the liquid phase relaxation results. With the ordinary cylindrical sample tube configuration, erroneous large values of R_1 may be obtained in the temperature region immediately below the boiling point. This artifact is clearly demonstrated in Figure 2 for CH₃-¹³COOH. It is possible that liquid-vapor interchange in the experiments of Lyerla, et al., 11 may account for the small discrepancies in the values of R_1^{other} for CH₃OH and CH₃I.

All data reported here are for samples that were carefully degassed. We have not studied in detail the effect of dissolved oxygen, but we did make one observation for $CH_3^{13}COOH$, which has a rather long T_1 , and hence should be sensitive to small changes. Opening the sample tube and shaking it increased R_1 from 0.025 sec⁻¹ to approximately 0.05 sec^{-1} . This increment, of about 0.025 sec^{-1} , is an order of magnitude smaller than that commonly found for dissolved oxygen affecting ¹H relaxation, typically of the order of 0.3 sec⁻¹. Similar results were recently reported by Jaeckle, et al.¹⁶

Conclusion

On the basis of the new data presented here, together with other recently reported results, we can make the

- (28) F. A. L. Anet and C. H. Bradley, private communication.
- (29) U. Haeberlen, private communication.

⁽²³⁾ B. P. Dailey, J. Chem. Phys., 33, 1641 (1960).
(24) W. Gordy, J. W. Simmons, and A. G. Smith, Phys. Rev., 74, 243, 1246A (1948).

⁽²⁵⁾ In principle Ri⁸⁰ in both CH₃Br and CH₃I can be found from measurements of T_2 . However, the effect on T_2 of scalar relaxation from the protons²⁶ must be eliminated by very rapid pulsing $(1/2 \tau > 10^3)$ 1), a pulse rate not attainable with our apparatus. sec-

⁽²⁶⁾ R. R. Shoup and D. L. VanderHart, J. Amer. Chem. Soc., 93, 2053 (1971).

⁽²⁷⁾ T. Maruyama, private communication.

⁽³⁰⁾ A. A. Maryott, T. C. Farrar, and M. S. Malmberg, J. Chem. Phys., 54, 64 (1971).

following observations about ¹³C relaxation in small molecules. 1. The relaxation is primarily due to ¹H-¹³C dipole-dipole interaction if ¹³C is bonded directly to one or more protons. 2. Spin rotation can be expected to contribute in small molecules, especially at temperatures near the boiling point, and to be a dominant relaxation mechanism for CH3 groups due to the free internal rotation about the CH_3 -R bond. 3.

Chemical shift anisotropy is, in general, not a significant relaxation mechanism. 4. Scalar relaxation only rarely contributes to R_1 and then only when ¹³C is bonded to an appropriate quadrupolar nucleus, such as ⁷⁹Br and ⁸¹Br, but probably never ¹²⁷I.

Acknowledgment. We wish to thank Dr. U. Haeberlen for making available to us his data on T_1 in CH₃¹³COOH at 61 MHz.

Molecular Orbital Theory of the Electronic Structure of Organic Compounds. IX. A Study of $n \rightarrow \pi^*$ Transition Energies in Small Molecules^{1a}

Robert Ditchfield, Janet E. Del Bene,^{1b} and J. A. Pople*

Contribution from the Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. Received February 19, 1971

Abstract: Ab initio minimal basis SCF-CI calculations have been performed on a series of small molecules possessing uv bands which may be attributed to $n \rightarrow \pi^*$ excitations. The calculated results show that this level of theory can give an adequate description of such transition energies. The changes in transition energies produced by substitution on four chromophores are analyzed in detail.

rganic molecules which contain nitrogen or oxygen in an unsaturated group often possess low-energy uv absorption bands of rather low intensity. These bands are known to be due to the excitation of nonbonding (n) electrons into antibonding π orbitals and have been called $n \rightarrow \pi^*$ bands by Kasha.² Experimental studies of such excitations have led to many correlations between transition energy and the nature and environment of the absorbing group, and there have been many theoretical attempts to explain these data. The earliest theoretical studies were all based on approximate theories which neglected electron interaction.³ At this level, transition energies are given by the difference of the n and π^* one-electron orbital energies, and substituent effects are discussed in terms of the way in which a particular substituent raises or lowers the energies of these orbitals. Although a theory which neglects electron interaction cannot give an overall correct picture of electronic spectra, it has been useful in rationalizing trends within restricted classes of compounds. At the semiempirical level, improvements were obtained by incorporating electron interaction into the theory, but this was usually done in an approximate manner.4

Although there have been several ab initio molecular orbital studies of $n \rightarrow \pi^*$ excited states, ^{5,6} there

(4) See R. G. Parr, "The Quantum Theory of Molecular Electronic Structure," W. A. Benjamin, New York, N. Y., 1964; or O. Sinanoglu and K. B. Wiberg, "Sigma Molecular Orbital Theory," Yale University Press, New Haven, Conn., 1970.

has been no systematic study at a uniform level of approximation. The aim of this work is to present such a study of $n \rightarrow \pi^*$ excited singlet states for a group of small molecules containing the chromophores >C=0, >C=N-, -N=N-, and -N=O and which (1) are acyclic; (2) contain only H, C, N, O, and F; (3) contain up to three heavy atoms (C, N, O, or F); and (4) may be represented in the ground state by a classical valence structure with no formal charges or unpaired electrons associated with any atom. The group of carbonyl compounds has been enlarged to include a greater variety of monosubstituted compounds and some disubstituted molecules, since these are particularly appropriate for examining substituent effects.

For this study each ground state is described by a single determinant of doubly occupied molecular orbitals, ψ_i , each of which is constructed from a minimal basis of Gaussian-fitted Slater-type atomic orbitals ϕ_{μ} . Wave functions, Ψ_i^l , describing singly excited configurations are formed from the ground-state wave function by promoting electrons from doubly occupied orbitals ψ_i to virtual orbitals ψ_i . Some allowance for electron reorganization on excitation is then made by permitting mixing of configurations representing different singly excited virtual states.

Quantum Mechanical Method

The quantum mechanical method used is that given in detail in ref 7. The closed-shell ground-state Ψ is rep-

703

 ⁽a) Acknowledgment is made of partial support under National Science Foundation Grant No. GP-9338; (b) NIH Postdoctoral Fellow.
 (2) M. Kasha, *Discuss. Faraday Soc.*, No. 9, 14 (1950).
 (3) See J. D. Roberts, "Notes on Molecular Orbital Calculations," W. A. Benjamin, New York, N. Y., 1961; or A. Streitwieser, Jr., "Molecular Orbital Theory for Organic Chemists," Wiley, New York, N. Y., 1961 1961.

^{(5) (}a) H. Basch, M. B. Robin, and N. A. Kuebler, J. Chem. Phys.,
47, 1201 (1967); (b) *ibid.*, 49, 5007 (1968).
(6) J. L. Whitten and M. Hackmeyer, *ibid.*, 51, 5584 (1969).
(7) J. Del Bene, R. Ditchfield, and J. A. Pople, *ibid.*, 55, 2236 (1971).